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Generalized Gradient Vector Flow for Snakes: New
Observations, Analysis, and Improvement
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Abstract—Snakes, or active contours, have been widely used
in image processing applications. An external force for snakes
called gradient vector flow (GVF) attempts to address traditional
snake problems of initialization sensitivity and poor convergence
to concavities, while generalized GVF (GGVF) aims to improve
GVF snake convergence to long and thin indentations (LTIs).
In this paper, we find and show that both GVF and GGVF
snakes essentially yield the same performance in capturing LTIs
of odd widths, and generally neither can converge to even-width
LTIs. Based on a thorough investigation of the GVF and GGVF
fields within the LTI during their iterative processes, we identify
the crux of the convergence problem, and accordingly propose
a novel external force termed as component-normalized GGVF
(CN-GGVF) to eliminate the problem. CN-GGVF is obtained by
normalizing each component of initial GGVF vectors with respect
to its own magnitude. Experimental results and comparisons
against GGVF snakes show that the proposed CN-GGVF snakes
can capture LTIs regardless of odd or even widths with a
remarkably faster convergence speed, while preserving other
desirable properties of GGVF snakes with lower computational
complexity in vector normalization.

Index Terms—Active contour models, convergence, external
force, gradient vector flow (GVF), snakes.

I. Introduction

S INCE SNAKES, or active contours, were first proposed
by Kass et al. [1] in 1987, they have become one of the

most active and successful research areas in computer vision
and image processing applications [2]. Active contours are
curves defined within an image domain that deform under the
influence of internal and external forces to conform to desired
features (like edges). Internal forces defined within the curve
itself are determined by the geometric properties of the curve,
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while external forces are derived from the image data, which
have been the most discussed issue in active contour models.

An energy function associated with the curve is defined, so
that the problem of finding desired features is converted into
an energy minimization process. Due to its high efficiency,
the snake model has found many applications, including
edge detection [1], shape recovery [3], [4], object tracking
[5]–[8], and image segmentation [9]–[12]. However, there are
two key shortcomings with the traditional snake. First, the
initial contour must be close enough to the desired features,
otherwise the snake will likely converge to a wrong result.
Second, it is difficult for the snake to move into boundary
concavities [13], [14].

An external force for snakes, called gradient vector flow
(GVF) [15], was introduced to largely overcome the two
limitations of the traditional snake. GVF is computed as a
diffusion of the gradient vectors of a gray-level or binary
edge map derived from an image. Since its publication about a
decade ago, GVF has been widely used and adapted to various
models and problems, e.g., segmentation [16]–[19], tracking
[6], [8], registration [20], and skeletonization [21]. Addition-
ally, automatic initialization methods of the GVF snake can
be found in [22] and [23]. Efficient numerical schemes are
applied to speed up the GVF computation [24], [25].

Although GVF has been widely used and improved in vari-
ous models, it still exhibits some defects, such as the difficulty
in forcing a snake into long and thin indentations (LTIs) as
well as noise sensitivity. In [26], Xu and Prince proposed a
generalized version of GVF (generalized GVF or GGVF) by
introducing two spatially varying weighting functions, which
has been reported to improve GVF convergence to LTIs as well
as robustness to noise. In [27], the GVF in the normal direction
(NGVF) snake is proposed, which can enter into LTIs at a
faster convergence speed. Furthermore, the normally biased
GVF (NBGVF) snake is claimed to perform well on weak edge
preserving and noise robustness while maintaining the desir-
able properties of capturing LTIs [28]. In [29], by adding a new
external force, an improved GVF active contour is presented
to detect LTIs. Besides these general snakes, there are also
some specific active contours aiming to segment the narrow
structures, like blood vessels in medical data or roads in aerial
images [30], [31]. In spite of the various improvements for
GVF/GGVF, the underlying mechanism for the difficulty in
capturing LTIs has still not been fully understood.

In this paper, we revisit the conventional edge-based
parametric GVF and GGVF snakes to present some new
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observations and the associated analysis, and then identify
the intrinsic difficulties with respect to GVF and GGVF
convergence to LTIs. Based on the theoretical analysis we
propose an improved snake model. Specifically, our main
contributions are summarized as follows.

1) New observations on GVF and GGVF snakes are given
to show that the two models essentially yield the same
performance in capturing LTIs of odd widths, and gener-
ally neither can converge to even-width LTIs. The obser-
vations are different from the opinion in [26] that GGVF
snakes outperform GVF snakes in the convergence to
LTIs.

2) The force characteristics within LTIs are theoretically
investigated, based on which, we identify two intrinsic
difficulties for GVF and GGVF snakes in convergence to
LTIs, namely, the obliteration and noise problems. More
details on the theoretical analysis and the two problems
can be found in Sections III and IV, respectively.

3) To cope with the obliteration problem, a simple yet
effective external force called component-normalized
GGVF (CN-GGVF) is developed, which can efficiently
move the snake into even-width LTIs, with details in
Section V.

The remainder of the paper is organized as follows.
Section II reviews the traditional snake, GVF and GGVF
snakes, and presents some new observations. Section III
theoretically examines the force characteristics within LTIs
and Section IV identifies the two intrinsic difficulties in
convergence to LTIs, i.e., the obliteration and noise problems,
in GVF and GGVF. In Section V, a novel external force termed
CN-GGVF for snakes is proposed. Furthermore, performance
of the CN-GGVF snake is examined in Section VI and the
conclusion is given in Section VII.

II. Background and New Observations

A. Traditional Snake Model

The traditional snake is represented by a parametric curve
c(s) = [x(s), y(s)], s ∈ [0, 1], which deforms through the
spatial domain of an image to minimize the energy function [1]

E(c(s))=
∫ 1

0

[
1

2
(α

∣∣c′(s)
∣∣2

+β
∣∣c′′(s)

∣∣2
)+Eext(c(s))

]
ds (1)

where α and β are weighting parameters controlling the
snake’s tension and rigidity, respectively, and c′(s) and c′′(s)
are the first and second derivatives of c(s) with respect to s.
The first two terms within the above integral stand for the
internal energy. The external energy Eext(c(s)) derived from
the image data takes on its smaller values at the desired
features. Representative external energy functions for a gray-
level image I(x, y) for seeking step edges are given as [1]

E
(1)
ext(x, y) = − |∇I(x, y)|2 (2)

E
(2)
ext(x, y) = − |∇[Gσ(x, y) ∗ I(x, y)]|2 (3)

where Gσ(x, y) is a 2-D Gaussian function with standard
deviation σ, ∗ denotes linear convolution, and ∇ is the gradient

operator. Typical external energy functions for a line-drawing
(black on white) [32] are

E
(3)
ext(x, y) = I(x, y) (4)

E
(4)
ext(x, y) = Gσ(x, y) ∗ I(x, y). (5)

To minimize E(c(s)), the snake must satisfy the Euler–
Lagrange equation

αc′′(s) − βc′′′′(s) − ∇Eext(c(s)) = 0 (6)

which can be viewed as a force balance equation

Fint(c(s)) + Fext(c(s)) = 0 (7)

where Fint(c(s)) = αc′′(s) − βc′′′′(s) is the internal force
shrinking and smoothing the contour, and the external force
Fext(c(s)) = −∇Eext(c(s)) pulls the snake to the desired
features.

To find a solution to (6), the active contour c(s) has to evolve
dynamically as a function of time t, i.e., c(s, t). By making the
partial derivative of c(s, t) with respect to t, i.e., ct(s, t), equal
to the left-hand side of (6), the dynamic snake function is
given as

ct(s, t) = αc′′(s, t) − βc′′′′(s, t) − ∇Eext(c(s, t)). (8)

The solution c(s) of (6) is obtained when the steady-state
solution c(s, t) of (8) is reached (ct(s, t) = 0) from an initial
contour c(s, 0). A numerical solution of c(s, t) on a discrete
grid can be obtained by discretizing (8) and solving the
discrete equation iteratively [1], [33].

B. GVF Snake Model

Xu and Prince proposed gradient vector flow (GVF) [15]
as an external force for active contours to largely overcome
the two key shortcomings of the traditional snake. The force
balance equation (7) is used as a starting point for designing
a GVF snake. The external force term −∇Eext(c(s)) in (7) is
replaced with a GVF field v(x, y) = [u(x, y), v(x, y)] defined
as the equilibrium solution of the following vector partial
differential equation:

vt (x, y, t) = μ∇2v (x, y, t) − |∇f |2 [
v (x, y, t) − ∇f

]
(9)

where vt (x, y, t) is the partial derivative of v(x, y, t) with
respect to t, and ∇2 = ∂2

/
∂x2 + ∂2

/
∂y2 denotes the Laplacian

operator. f is an edge map derived from the image and defined
to have larger values at the desired features, which is typically
the additive inverse of an external energy function as given in
(2)–(5). μ controls the smoothness degree of the GVF field
and should be set according to the noise level in the image
(larger μ for more noise).

C. GGVF Snake Model

1) GGVF Field: By introducing two spatially varying
weighting functions into the GVF formulation, Xu and Prince
proposed an external force referred to as generalized gradient
vector flow (GGVF) [26]. As a generalization of GVF, GGVF
was reported to improve contour convergence to LTIs and
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robustness to noise, which is defined as the equilibrium
solution of the following partial differential equation:

vt(x, y, t) = g(|∇f |)∇2v(x, y, t) − h(|∇f |)[v(x, y, t) − ∇f ]
(10)

where
g(|∇f |) = exp(− |∇f |/k) (11)

h(|∇f |) = 1 − exp(− |∇f |/k). (12)

The parameter k regulates to some extent the tradeoff between
the first term (known as smoothing term) and the second term
(known as data term) in the right-hand side of (10) and it
should be set according to the amount of noise in the image
(larger k for higher noise levels).

2) Numerical Implementation: As in [26], the partial
differential equation (10) specifying the GGVF field can be
implemented using an explicit finite difference scheme. In
(10), |∇f | can be calculated using any digital image gradient
operator, e.g., simple central differences employed in this
paper. Since the data term in (10) is defined to encourage the
GGVF field to be close to the edge map gradient computed
from the image, its weighting coefficient h(|∇f |) must be
greater than or equal to 0. According to (12), the parameter k

must be greater than 0.
To set up the iterative solution, let the spatial sample

intervals be �x and �y and the time step for each iteration be
�t. The partial derivative vt(x, y, t) can then be approximated
as [v(x, y, t + �t) − v(x, y, t)]/�t. On a discrete grid, the
Laplacian term can be approximated by

∇2v (x, y, t) =
1

�x�y
A ∗ v (x, y, t) (13)

where A =

[
0 1 0
1 −4 1
0 1 0

]
is the Laplacian matrix.

Substituting the above approximations into (10) gives an
iterative solution to the GGVF field as follows:

v(x, y, t + �t) = v(x, y, t) + �t
�x�y

g(|∇f |) A ∗ v(x, y, t)
−�th(|∇f |)[v(x, y, t) − ∇f ]. (14)

According to the GGVF stability constraint �t
/

(�x�y) ≤
1
/

4 [26], �t must be not larger than 1
/

4 by making �x =
�y = 1. To obtain the maximum smoothness of the GGVF
field, we set �t = 1

/
4. Accordingly, (14) can be rewritten as

v(x, y, t + �t) = v(x, y, t) + 1
4g(|∇f |) A ∗ v(x, y, t)

− 1
4h(|∇f |)[v(x, y, t) − ∇f ]. (15)

The desired external force field v(x, y, t) is iteratively calcu-
lated from the initial vector field v(x, y, 0) = ∇f , i.e., the
gradient of the edge map. Typically, the iteration number
(denoted as n) required to calculate the GGVF field or the
above GVF field for an n1 ×n2-pixel image is

√
n1 × n2 [15].

After the iterative process, external forces in actual imple-
mentations are normalized to unit vectors to make the snake
evolve at a constant speed. Typically, the initial GGVF vectors
v(x, y) = [u(x, y), v(x, y)] are normalized with respect to their
magnitudes using

vvn−ggvf (x, y) =

{
v(x, y)/|v(x, y)|, |v(x, y)| �= 0
[0, 0] , |v(x, y)| = 0

(16)

which is referred to as vector-based normalization.

Fig. 1. Performance of GVF and GGVF snakes in detecting an odd-width
LTI. The initial and resulting snakes are indicated by cyan dashed and solid
lines, respectively. The external force fields in the top and bottom rows are
properly and over smoothed, respectively. First column: GVF snakes. Second
column: GVF fields within the LTI. Third column: GGVF snakes. Fourth
column: GGVF fields within the LTI. (a) GVF snake. (b) Properly smoothed.
(c) GGVF snake. (d) Properly smoothed. (e) GVF snake. (f) Over-smoothed.
(g) GGVF snake. (h) Over-smoothed.

D. New Observations on GVF and GGVF Snakes

It was reported in [26] that GGVF snakes outperform GVF
snakes in the convergence to LTIs. GVF’s difficulty of forcing
a snake into an LTI is caused by excessive smoothing of
the field near the LTI boundary, governed by the smoothing
coefficient μ in (9). When a much smaller μ is used, the GVF
snake can also achieve a good convergence to the LTI similar
to that of GGVF, but at the expense of an order of magnitude
higher computational complexity than that of GGVF [26].

However, to our observation, GVF and GGVF snakes yield
almost the same performance in convergence to LTIs. Specifi-
cally, when the LTI width is of an odd number of pixels, both
snakes can converge completely to the LTI if their external
force fields are appropriately smoothed1, as reported in [26],
whereas the computational cost required for the GVF field is
almost the same as that for the GGVF field, which is opposed
to the opinion in [26]. However, if their vector fields are over-
smoothed2, not only the GVF snake but also the GGVF snake
fails to capture the LTI. On the other hand, when the LTI width
is an even number of pixels, in general, neither the GVF snake
nor the GGVF snake is able to detect the LTI no matter how
their external force fields are smoothed. The following will
further elaborate our observations.

Fig. 1 shows the performance of the GVF and GGVF snakes
in capturing an odd-width LTI. The original image in Fig. 1
is a line-drawing of a square-shaped object (shown in black)
with the odd-width LTI. All resulting snakes indicated by cyan
solid lines are derived from a same initialization indicated by
a cyan dashed line. All fields within the LTI are sampled by
a factor of 3 in the y direction. We find that at almost the
same computational cost, both the GVF snake in Fig. 1(a)

1The vector field is considered to be appropriately smoothed when k in (10)
is less than a selected value to be discussed in Section IV-B.

2The vector field is considered to be over-smoothed when k is greater than
the selected value.
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Fig. 2. Performance of GVF and GGVF snakes in detecting an even-width
LTI. The initial and resulting snakes are indicated by cyan dashed and solid
lines, respectively. The external force fields in the top and bottom rows are
properly and over smoothed, respectively. First column: GVF snakes. Second
column: GVF fields within the LTI. Third column: GGVF snakes. Fourth
column: GGVF fields within the LTI. (a) GVF snake. (b) Properly smoothed.
(c) GGVF snake. (d) Properly smoothed. (e) GVF snake. (f) Over-smoothed.
(g) GGVF snake. (h) Over-smoothed.

and the GGVF snake in Fig. 1(c) converge completely to
the odd-width LTI when their vector fields are appropriately
smoothed, as shown zoomed in Fig. 1(b) and (d), respectively.
On the contrary, if their vector fields are over-smoothed, not
only the GVF snake in Fig. 1(e), but also the GGVF snake
in Fig. 1(g) is unable to detect the LTI. The corresponding
GVF and GGVF fields are shown zoomed in Fig. 1(f) and (h),
respectively.

Fig. 2 shows the performance of the GVF and GGVF snakes
in capturing an even-width LTI. In Fig. 2, the original image is
a line-drawing of a square-shaped object (shown in black) with
the even-width LTI. All resulting snakes represented by cyan
solid lines are derived from a same initialization represented
by a cyan dashed line. All fields within the LTI are sampled
by a factor of 3 in the y direction. From Fig. 2, we can
observe that neither the GVF snakes in the first column nor the
GGVF snakes in the third column are able to move into the
even-width LTI whether their vector fields are appropriately or
over smoothed. The GVF and GGVF fields are shown zoomed
in the second and fourth columns, respectively. In summary,
Figs. 1 and 2 demonstrate that GVF and GGVF snakes exhibit
almost the same performance in terms of convergence to LTIs
regardless of odd or even widths, which is different from the
opinion in [26]. More in-depth analyses and validations will
be provided in the following section.

III. Analysis of Force Field Characteristics

Within LTIs

Since the role of external forces is to attract the snake to the
desired boundary, external forces within LTIs are thoroughly
investigated in this section to explore the convergence behavior
of the GGVF snakes. In this paper, we refer to the gradient
vectors of the edge map as diffusion sources for the GVF and
GGVF external forces, and the diffusion sources can be further
divided into two categories: those at the desired boundaries,

Fig. 3. Initial external force field with the value of every force component
within an W × L-pixel indentation, where gray pixels represent those in the
indentation while the black ones are boundary pixels.

and at the nondesired boundaries. Here, the desired boundaries
are boundaries of objects we are interested in, while the
nondesired boundaries refer to those of other objects or noise.

A. Computational Model for External Forces

Fig. 3 shows an edge map gradient at every pixel within an
W × L-pixel indentation. The x- and y-component values of
the initial gradient vectors are also listed in Fig. 3. After n

(n = 0, 1, 2, . . . ) iterations, the external force vector at (x, y)
is represented as vn

x,y = [un
x,y, vn

x,y], x = 1, 2, . . . , W , y =
1, 2, . . . , L.

As shown in Fig. 3, for the black pixels at the indentation
boundary, we can get |∇f | = 0.5 or |∇f | = 0.5

√
2. To main-

tain the constant gradient vectors at the indentation boundary
during iteration, a small enough smoothing coefficient g(|∇f |)
and a large enough data coefficient h(|∇f |) are required.
According to (11) and (12), it would be appropriate to confirm
that g(|∇f |) ≈ 0 and h(|∇f |) ≈ 1 with a given small enough
k > 0. With g(|∇f |) ≈ 0 and h(|∇f |) ≈ 1, (15) becomes

v(x, y, t + �t)

= v(x, y, t)+
1

4
×0×A∗v(x, y, t)− 1

4
×1×[v(x, y, t)−∇f ]

= v(x, y, t)− 1

4
[v(x, y, t)−∇f ]

=
3

4
v (x, y, t)+

1

4
∇f. (17)

As v (x, y, 0) = ∇f , we get

v (x, y, t) =
3

4
∇f +

1

4
∇f = ∇f. (18)

This means at the black boundary pixels, for x =
2, 3, . . . , W − 1, vn

x,L = v0
x,L, and for x = 1, W , y =

1, 2, . . . , L, vn
x,y = v0

x,y.
Next, only the external forces at the gray pixels in ho-

mogeneous regions, i.e., vn
x,y, x = 2, 3, . . . , W − 1, y =

1, 2, . . . , L−1, are left to be considered. For the gray pixels in
Fig. 3, we can get |∇f | = 0. From (11) and (12), we can obtain
g(|∇f |) = 1 and h(|∇f |) = 0. By substituting them into (15),
the corresponding iterative solution that involves computing
GGVF external forces at the gray pixels is obtained as

v (x, y, t + �t) = v (x, y, t) +
1

4
A ∗ v (x, y, t) (19)

which can be rewritten as

v (x, y, t + �t) =
1

4

[
0 1 0
1 0 1
0 1 0

]
∗ v (x, y, t) (20)

indicating that in homogeneous regions, the value of each
component at each pixel is computed as the mean of those
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Fig. 4. (a) x- and (b) y-component values of the stabilized external forces at the gray pixels within a 81 × 81-pixel indentation. (c) Base-10 logarithms of
the ratios of the x-component magnitudes to the y-component magnitudes.

at its four adjacent pixels after every iteration. Namely, the
GGVF external force at each gray pixel (x, y) satisfies

4 vn+1
x,y = vn

x−1,y + vn
x,y+1 + vn

x+1,y + vn
x,y−1,

x = 2, 3, . . . , W − 1, y = 1, 2, . . . , L − 1. (21)

Once the GGVF vector reaches a stable state, we have
vn+1

x,y = vn
x,y, x = 2, 3, . . . , W − 1, y = 1, 2, . . . , L − 1.

Substituting it into (21) yields a linear equation for each
component of the stabilized external force as follows:

4 un
x,y = un

x−1,y + un
x,y+1 + un

x+1,y + un
x,y−1,

x = 2, 3, . . . , W − 1, y = 1, 2, . . . , L − 1 (22a)

4 vn
x,y = vn

x−1,y + vn
x,y+1 + vn

x+1,y + vn
x,y−1,

x = 2, 3, . . . , W − 1, y = 1, 2, . . . , L − 1. (22b)

Within the W ×L-pixel indentation, there are (W −2)×(L−1)
gray pixels corresponding to (W − 2) × (L − 1) external force
vectors. For given W and L, all the x- and y-component values
of the stabilized external forces at the gray pixels are obtained
by solving two systems of (W − 2) × (L− 1) linear equations,
respectively. Note that the pixels enclosing the gray pixels at
the top of the indentation are not the boundary pixels as shown
in Fig. 3. The external forces at these pixels change as the
iteration proceeds according to their iterative solution (20).
To solve the two systems of linear equations, we set v0

x,0 =
[0, 0.5], x = 2, 3, . . . , W − 1, such that vn

x,0 = v0
x,0 = [0, 0.5],

x = 2, 3, . . . , W − 1, since their iterative solution is changed
to (18). Under this assumption, the y-component magnitudes
of the stabilized vectors at the gray pixels increase, and the
x-component magnitudes decrease according to (18) and (20).

B. Analysis on Force Field Characteristics

An example of solving the above systems of linear equations
with W = 81 and L = 81 of an odd-width indentation is shown
in Fig. 4. Fig. 4(a) and (b) illustrates the x- and y-component
values, respectively, of the stabilized external forces at the gray
pixels. Fig. 4(c) shows the base-10 logarithms of the ratios of
the x-component magnitudes to the y-component magnitudes.

Three fundamental properties can be observed. First, the x-
component values are zero at the pixels of the middle column.
Second, the component magnitudes of the stabilized external
forces are symmetric. Third, the farther the gray pixel is from
the diffusion sources, the smaller the component magnitude is
at the pixel. These three properties are independent of W and
L, but are determined by the iterative solution (20) and the

diffusion sources (i.e., initial external forces at the indentation
boundary).

According to the first and third properties, we can rea-
sonably conjecture that when the gradient vectors at the LTI
boundaries are well preserved, the force components pointing
toward the LTI bottom are smaller (or even much smaller) in
magnitude than their orthogonal counterparts at the central
part of each column (except the middle one) due to the
smaller number of diffusion sources and the larger diffusion
distances. To verify this conjecture, we can look into the
relationship between the x-component magnitudes and the y-
component magnitudes at the gray pixels when the 81 × 81-
pixel indentation is gradually changed to a long and thin one
by keeping L fixed and decreasing W (from 81 to 5).

Following the third property, from Fig. 4 we can see that
for the gray pixels in each row, the x-component magnitude
decreases from the end pixel to the center pixel, and is
minimum (equal to 0) at the center pixel. In contrast, the
y-component magnitude increases from the end pixel to the
center pixel, and is maximum at the center pixel. Therefore,
as shown in Fig. 4(c), the base-10 logarithm of the ratio of
the x-component magnitude to the y-component magnitude
decreases from the end pixel to the center pixel, and is
minimum (negative infinity) at the center pixel. Except the
middle column, i.e., (W +1)/2th column, the logarithm in each
row is minimum in the (W −1)/2th and (W + 3)/2th columns.
Therefore, according to the second property, we only need to
examine the logarithms of the ratios in the (W−1)/2th column
to verify our conjecture.

Fig. 5 shows such logarithms and the corresponding x-
and y-component values with a fixed L (81) and decreasing
W (from 81 to 5). From Fig. 5(a) and (b) we can see that
the x- and y-component magnitudes increase and decrease,
respectively, as W decreases. Therefore, as demonstrated in
Fig. 5(c), the base-10 logarithms of the ratios increase as
W decreases from 81 to 5. When the indentation becomes
long and thin, the x-component magnitudes are significantly
greater than the y-component magnitudes at the pixels near the
center.

Similar to Fig. 5, Fig. 6 explores the stabilized external
forces at the gray pixels of the middle column with a fixed
length L (81) and decreasing odd-width W (from 81 to 3).
As described above, the x-component values are zero. As
shown in Fig. 6(a), though the y-component magnitudes are
maximum at the pixels of the middle column, some of them
are close to zero at the pixels near the center when the
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Fig. 5. (a) x- and (b) y-component values of the stabilized external forces at the gray pixels of the (W − 1)/2th column. (c) Base-10 logarithms of the ratios
of the corresponding x-component magnitudes to the y-component magnitudes.

indentation becomes long and thin. The base-10 logarithms
of these magnitudes are shown in Fig. 6(b).

After the investigation of the stabilized external forces,
we further explore their characteristics during their iterative
process. As shown in Fig. 3, the magnitudes of the initial
external forces at the gray pixels are zero. As the iteration
proceeds, the diffusion sources are diffused farther away from
the boundary and into the gray pixel region. The x-components
of the diffusion sources will be diffused over the entire
gray pixel region earlier than the y-components due to the
smaller diffusion distances. And then the y-components will
be diffused to every gray pixel. As the iteration continues, the
magnitude of each external force component at each gray pixel
increases until the iteration converges.

When the x-components of the diffusion sources are dif-
fused over the entire gray pixel region for the first time, the
x-component magnitude in the gray pixel region is minimum at
the pixels of the (W −1)/2th and (W +3)/2th columns (except
the middle one). From (20) we can obtain that the minimum
magnitude is equal to (1/4)(W−1)/2. From Fig. 6(b) we can
see that even the minimum magnitude is significantly greater
than the y-component magnitudes of the stabilized vectors at
the pixels of the central part of the middle column. Hence,
it is concluded that after the diffusion sources are diffused
over the gray pixel region, the x-component magnitudes are
always significantly greater than the y-component magnitudes
at the pixels of the central part of each column (except the
middle one) whenever the iteration terminates. Similarly, we
can also obtain the same force characteristic of GGVF in every
column within the even-width LTI, as well as the GVF force
characteristic for both odd- and even-width LTIs.

IV. Two Problems in GGVF Convergence to LTIs

Resulting from the force characteristic described above, two
intrinsic difficulties are identified for the GGVF convergence
to LTIs in this section. The first difficulty, referred to as the
obliteration problem, is that the significantly smaller force
components pointing toward the LTI bottom are obliterated
by their orthogonal counterparts at the normalization step. We
note that this problem can be coincidentally avoided when the
LTI width is an odd number of pixels. The second difficulty,
termed the noise problem, comes from noise which can easily
affect these smaller force components during the iterative
process. Both problems lead to poor convergence to LTIs.

Fig. 6. (a) y-component values of the stabilized vectors at the gray pixels of
the middle column. (b) Base-10 logarithms of the y-component magnitudes.

A. Obliteration Problem in GGVF

Due to the force characteristic within the odd-width LTI, in
the normalization process (16), the force components pointing
toward the LTI bottom are obliterated by their orthogonal
counterparts at the pixels of the central part of each column,
except the middle one where the obliteration can coinciden-
tally be avoided owing to the zero x-component magnitudes.
The desired consistently downward forces of magnitude 1 are
thus obtained in the middle column, which can drive the snake
into the LTI bottom as shown in Fig. 1(c) and (d). Unlike
the odd-width LTI, the even-width LTI has no such middle
column, as shown in Fig. 2. With the normalization, the y-
components are obliterated by their orthogonal counterparts
at the pixels of the central part of each column. As a result,
although the consistently downward components do exist, they
are too weak to be observed, as shown in Fig. 2(d). During
the contour convergence process, these components may have
no effect on pulling the snake toward the LTI bottom, and are
readily overwhelmed by the internal forces, leading to a wrong
convergence result, as shown in Fig. 2(c).
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Fig. 7. GGVF snake convergence to an even-width LTI. (a) Initial snake
(cyan dashed line). (b) Evolving contours (magenta solid lines). (c) Resulting
GGVF snake (cyan solid line).

To verify the above claims, Fig. 7 shows a new GGVF con-
vergence to the even-width LTI by replacing the initialization
in Fig. 2(c) with a new one in Fig. 7(a). Fig. 7(b) displays a
sequence of curves marked by magenta solid lines depicting
the iterative progression of the GGVF snake. Fig. 7(c) shows
the stabilized GGVF snake represented by a cyan solid line,
which is almost the same as that in Fig. 2(c). As shown in
Fig. 7, although the consistently downward components do
exist, they are too weak to prevail over the internal forces,
which are designed to shrink and smooth the active contour.

B. Noise Problem in GGVF

It was reported in [26] that GGVF snakes outperform GVF
snakes in the convergence to LTIs. GVF’s difficulty of forcing
a snake into an LTI is caused by the over-smoothing of the field
near the LTI boundary, governed by the smoothing coefficient
μ in (9). When a much smaller μ is used, the GVF snake
can also achieve a good convergence to the LTI. However,
a satisfactory explanation for their observations was not pro-
vided in [26]. This subsection points out that since the force
components pointing toward the LTI bottom are significantly
smaller in magnitude than their orthogonal counterparts at
some pixels, these components are easily affected by noise.
In addition, the larger the tradeoff parameter k, the greater
the impact of noise. Therefore, it is necessary to estimate the
appropriate maximum k for a given W × L-pixel indentation.

1) Noise Effect on GGVF External Forces: As described in
Section III-A, by choosing a small enough k > 0, the iterative
solution of the GGVF external forces at the indentation bound-
ary can be approximately written as (18). As a result, the edge
map gradients at the indentation boundary are always well
preserved, which act as shields impenetrable to the diffusing
external forces. Meanwhile, the diffusion sources of the GGVF
external forces within the LTI are found to be mainly the edge
map gradients at the black indentation boundary.

According to (11) and (12), we can see that as k increases,
g(|∇f |) and h(|∇f |) in (15) increases and decreases, respec-
tively. That means, as k becomes larger, the GGVF external
forces at the indentation boundary are more easily changed and
their shielding effects decrease in the iterative process. As a
result, besides the edge map gradients at the LTI boundary,
the diffusion sources of the GGVF external forces within the
LTI also contain the remaining edge map gradients within the
image, which can be viewed as noise in generating the desired
consistently downward components.

As analyzed in Section III, the horizontal components
derived from the edge map gradients at both side edges are

substantially larger in magnitude than the downward compo-
nents derived from the edge map gradients at the bottom.
Consequently, the vertical noises from both side edges can
easily affect the consistently downward components, which
are critical for moving the snake into the LTI bottom.

2) Relationship between k and Noise: According to (15)
and (20), we can find that the vertical noises become larger
with an increasing k. That means, the directional consistency
of the resulting aggregated components, i.e., the combination
of the consistently downward components and the components
generated from the vertical noises, is more likely to be dis-
rupted as k increases. When the GGVF external force reaches
a stable value, i.e., v(x, y, t + �t) = v(x, y, t), the theoretical
maximum noise occurs [26]. Substituting the equation into the
iterative solution (15) yields the following

1

4
g(|∇f |)A ∗ u(x, y, t) − 1

4
h(|∇f |)[u(x, y, t) − fx(x, y)] = 0

(23a)

1

4
g(|∇f |)A ∗ v(x, y, t) − 1

4
h(|∇f |)[v(x, y, t) − fy(x, y)] = 0.

(23b)
As shown in Fig. 3, for each black pixel at both side

edges of the indentation, we can get ∇f = (0.5, 0) or
∇f = (−0.5, 0), and then |∇f | = 0.5. Because the initial
y-component value is equal to 0, the vertical noise is the
stabilized y-component value v(x, y, t), corresponding to vn

x,y.
By substituting fy(x, y) = 0 and |∇f | = 0.5 into (23a), we can
obtain the maximum |vn

x,y|, i.e., the magnitude of the maximum
vertical noise, as follows:∣∣vn

x,y

∣∣ =

∣∣∣∣ g(|0.5|)
4g(|0.5|)+h(|0.5|) (vn

x−1,y+vn
x,y+1+vn

x+1,y+vn
x,y−1)

∣∣∣∣
=

g(|0.5|)
3g(|0.5|) + 1

∣∣vn
x−1,y + vn

x,y+1 + vn
x+1,y + vn

x,y−1

∣∣
< g(|0.5|) (∣∣vn

x−1,y

∣∣ +
∣∣vn

x,y+1

∣∣ +
∣∣vn

x+1,y

∣∣ +
∣∣vn

x,y−1

∣∣)
≤ 2g(|0.5|)
= 2 exp(−1/2k) (24)

which is determined by k and increases as k increases.
Similarly, the external force components generated from these
maximum vertical noises at both side edges of the indentation
can also be calculated by solving a system of (W −2)×(L−1)
linear equations. By ensuring that these component magnitudes
are less than the corresponding downward component magni-
tudes, we can obtain the appropriate maximum k, which is
determined by W and L as well as the initial external forces
at the indentation boundary.

When a larger k is selected, the consistently downward
components are very likely to be destroyed. As shown in
Fig. 1(h), the over-smoothed GGVF field has no such com-
ponents, but some upward components within the odd-width
LTI. As a result, the snake using the over-smoothed GGVF
field is unable to protrude into the LTI, as shown in Fig. 1(g).
Similarly, the over-smoothed GGVF field also has no such
components within the even-width LTI in Fig. 2(h). But since
the internal forces are dominant within the even-width LTI, the
vertical components almost have no effect on the convergence
result, as shown in Fig. 2(c) and (g).
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Similarly, we can also obtain that GVF has the same two
difficulties as GGVF in generating the desired external forces
for moving the snake into LTIs. Note that since GVF and
GGVF show the same speed for diffusing external forces,
the same number of iterations is required for achieving the
desired GVF and GGVF fields, which, in turn, verifies our
new observations in Figs. 1 and 2 that the two snakes exhibit
almost the same performance in terms of convergence to LTIs.

V. Proposed CN-GGVF Snake Model

The solutions to the above two intrinsic problems are highly
desirable for GVF and GGVF snakes. The noise problem can
be solved by appropriately selecting the smoothness degree of
the vector fields. In this section, we focus on the obliteration
problem by developing an improved external force.

A. Component-Normalized GGVF Field

As described above, the obliteration problem occurs when
(16) is employed to normalize an external force vector with
two components having a significant difference in magnitude.
To solve this problem, the smaller component should be
increased so that each component can affect the snake
deformation. It is straightforward to see that by separately
normalizing each component of the initial GGVF vector with
respect to its own magnitude, each normalized component
takes the same effect on driving snakes. The new generated
external force, which we refer to as component-normalized
GGVF (CN-GGVF) field vcn−ggvf (x, y) = [ucn−ggvf (x, y),
vcn−ggvf (x, y)], is thus defined as

ucn−ggvf (x, y) =

{
1, u(x, y) > 0
0, u(x, y) = 0

−1, u(x, y) < 0
(25)

vcn−ggvf (x, y) =

{
1, v(x, y) > 0
0, v(x, y) = 0

−1, v(x, y) < 0
(26)

where u(x, y) and v(x, y) are the x- and y-components,
respectively, of the external force at (x, y) in the GGVF field.
Equations (25) and (26) are the sign function. Therefore, the
CN-GGVF field is simply rewritten as

vcn−ggvf (x, y) =
[
sgn (u (x, y)) , sgn (v (x, y))

]
(27)

where sgn (·) denotes the sign function. Equation (27) is es-
sentially a vector normalization approach. Different from (16)
that is termed as vector-based normalization, (27) is referred
to as component-based normalization. As in [26], the numer-
ical implementation of (10) specifying the GGVF field3 can
employ either an explicit finite difference method with a stable
condition or an implicit scheme that is unconditionally stable.

We call the active contour that uses the CN-GGVF field
as its external force a CN-GGVF snake. By replacing the
standard external force Fext(c(s)) = −∇Eext(c(s)) in (8) with a

3In this paper, (10) is replaced by vt(x, y, t) = g(|∇f |)×[
g(|∇f |)vNN(x, y, t) + h(|∇f |)vTT(x, y, t)

] − h(|∇f |) [v(x, y, t) − ∇f
]

to calculate the GGVF field [27], [34], such that a larger range is available
for k to avoid the noise problem described in Section IV-B.

Fig. 8. Effects of (a) vector- and (b) component-based normalization
schemes on a pair of initial vectors v1 and v2 indicated by red arrows. The
normalized vectors v′

1 and v′
2 are marked by blue arrows.

CN-GGVF field vcn−ggvf (x, y), we can obtain the correspond-
ing dynamic CN-GGVF snake equation as

ct(s, t) = αc′′(s, t) − βc′′′′(s, t) + vcn−ggvf (c(s, t)) (28)

which can be solved numerically using the finite difference
approach of the traditional snake given in Section II-A.

B. Comparisons Between Component- and Vector-Based Nor-
malizations

First, we compare the computational complexity of the
component-based normalization with that of the vector-based
normalization. To normalize an initial GGVF field derived
from an N × N-pixel image, the vector-based normalization
requires 2 × N × N multiplication operations, 2 × N × N

division operations, and N × N square root operations. While
the proposed normalization only needs 2×N ×N comparison
operations, comparing favorably to the computational com-
plexity of the original one. Note that the magnitudes of the
normalized GGVF vectors calculated by (16) are usually equal
to 1, while those of the CN-GGVF vectors are

√
2 generally.

Then we compare the effects of the two normalization
methods on a pair of initial GGVF vectors at the object
boundary. As illustrated in Fig. 8, the initial vectors v1 and v2

indicated by red arrows are equal in magnitude and opposite in
direction, and the normalized vectors v′

1 and v′
2 are marked by

blue arrows. Fig. 8(a) shows the normalized GGVF vectors
computed using the vector-based normalization (16). Com-
pared with the initial ones, the magnitudes of the normalized
vectors are altered, while their orientations are preserved.
Fig. 8(b) shows the CN-GGVF external forces calculated using
the proposed component-based normalization (27), causing
changes in both magnitude and orientation. While it should
be noted that the pair of the CN-GGVF vectors are still equal
in magnitude and opposite in direction. In comparison, the
effect of the proposed normalization on the directional change
can be viewed as a reduction in the directional resolution.

C. Comparisons Between CN-GGVF and GGVF Convergence
Behaviors

As mentioned above, the edge map gradient used as an
external force for the traditional snake can only drive the snake
to the object edges in the vicinity of the edges. GGVF is
to extend the effect of the edge map gradient farther away
from the edges, and is thus defined as a diffusion of the
gradient vectors of an edge map [26]. The resulting field will
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Fig. 9. Streamlines of particles placed in (a) GGVF field and (b) CN-GGVF
field.

conform to the edge map gradient at strong edges, but will vary
smoothly away from the boundaries. And the resulting GGVF
external forces will point to and move the snake toward the
strong boundaries (mostly the desired boundaries). Under the
influence of the internal forces and the GGVF field, the snake
will deform and finally stop moving at the desired boundaries,
where the external force at each snaxel (snake elements) points
to the opposite direction of the movement.

As described above, compared with the normalized GGVF
field, the CN-GGVF field changes not only the magnitudes
but also the directions of the initial vectors. From (28) we
can see that the magnitude changes will lead to the alteration
in the convergence speed of the snake, while the direction
changes will alter the convergence trajectory and may alter the
convergence result. Since the effect of the proposed normaliza-
tion on the vector directions is only to reduce the directional
resolution, the CN-GGVF field is still relatively smooth. As a
result, the CN-GGVF external forces can also move the snake
toward the desired boundaries. On the other hand, since the
CN-GGVF external forces at the desired boundaries are still
equal in magnitude and opposite in direction, the snake will
still stop at the desired boundaries. Hence, it is concluded that
if the effect of the internal forces is not taken into account
(only the effect of the external forces is discussed here), the
CN-GGVF snake will converge to the same result as that of
the GGVF snake under the same initial conditions, although
with different paths and speeds.

D. Streamlines

Streamlines are the paths where free particles move when
placed in a vector field [15]. The capture ranges and motion
inducing properties of various external forces can be observed
by looking at their streamlines. Fig. 9(a) and (b) shows
the streamlines of particles placed in a GGVF field and a
CN-GGVF field, respectively, to further compare the conver-
gence behaviors of the two snakes. Both the vector fields are
derived from an edge map of the above line-drawing with
an odd-width LTI in Fig. 1. From Fig. 9 we can see that the
particle trajectories driven by the CN-GGVF field are different
from those driven by the GGVF field, while that the free
particles are drawn toward and eventually stopped at the object
boundaries in Fig. 9(b) is exactly the same as that in Fig. 9(a).
As none of these free particles deforms under the internal
force, Fig. 9 confirms that without considering the effect of
the internal forces, the proposed CN-GGVF snake and the
GGVF snake will converge to the same result under the same

Fig. 10. (a) 81 × 81-pixel line-drawing of a square with broken boundaries.
(b) CN-GGVF field. (c)–(f) Resulting CN-GGVF snakes (cyan solid lines)
from four different initializations (cyan dashed lines).

initial conditions, in spite of deforming along different paths
and at different speeds.

VI. Experimental Results and Analysis

This section demonstrates several desirable properties of
CN-GGVF snakes. To exemplify the advantages of the pro-
posed snakes over GGVF snakes, we compare the qualitative
performance of the two snakes on both synthetic and real
images. We employ α = 1 and β = 0 for all snakes, which are
dynamically reparameterized during deformation to maintain
contour point separation to within 0.5–1.5 pixels [35]. For each
test image, the same initial contour (indicated by a dashed line)
and parameter values are used for both the snakes (indicated
by solid lines). All edge maps used in active contours are
normalized to the range [0, 1].

A. Capture Range and Initialization Sensitivity

We use a square-shaped line-drawing to evaluate the perfor-
mance of the CN-GGVF snake in terms of capture range and
initialization sensitivity. Fig. 10(a) reveals the original 81×81-
pixel image with broken boundaries. Fig. 10(b) displays the
CN-GGVF field (k = 0.01 and n = 81) derived from an edge
map computed using −I(x, y). Fig. 10(c)–(f) shows a set of
stabilized CN-GGVF snakes from four different initializations.
Using the vector field in Fig. 10(b) as an external force,
the CN-GGVF active contour can converge correctly from
these four initializations placed inside, outside, and across
the desired boundary. In addition, as the initializations in
Fig. 10(c) and (d) are far away from the square-shaped object,
the CN-GGVF snake appears to have both an insensitivity to
initialization and a large capture range.

B. Convergence to LTIs

Fig. 11 compares the performance of the CN-GGVF snake
in capturing LTIs with that of the GGVF snake. We use four
160 × 160-pixel square-shaped line-drawings with 5-, 6-, 7-,
and 8-pixel-width LTIs as test images. In Fig. 11, all edge
maps are computed using −I(x, y). k = 0.01 is selected to
calculate the appropriately smoothed GGVF and CN-GGVF
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Fig. 11. Performance of GGVF and CN-GGVF snakes in capturing LTIs.
The original images are 160 × 160-pixel line-drawings with 5-, 6-, 7-, and
8-pixel-width LTIs in the first, second, third, and fourth rows, respectively.
First column: GGVF snakes. Second column: GGVF external forces within
LTIs. Third column: CN-GGVF snakes. Fourth column: CN-GGVF external
forces within LTIs. (a) GGVF snake. (b) 5-pixel-width. (c) CN-GGVF snake.
(d) 5-pixel-width. (e) GGVF snake. (f) 6-pixel-width. (g) CN-GGVF snake.
(h) 6-pixel-width. (i) GGVF snake. (j) 7-pixel-width. (k) CN-GGVF snake.
(l) 7-pixel-width. (m) GGVF snake. (n) 8-pixel-width. (o) CN-GGVF snake.
(p) 8-pixel-width.

fields with n = 160. All fields within the LTIs are displayed,
which are sampled by a factor of 3 in the vertical direction.
All resulting snakes are derived from a same initialization.
We compare the two snakes in terms of the external forces as
well as the convergence results and speeds of the contours as
follows.

1) External Forces Within LTIs: As analyzed in
Section III, when the GGVF field is appropriately smoothed,
the downward force components are generated at every pixel
within all LTIs. After the vector-based normalization, the
consistently downward forces of magnitude 1 are obtained
at the pixels of the middle column where the x-component
magnitudes are 0, as shown in Fig. 11(b) and (j). And
some components are obliterated by their orthogonal coun-
terparts because of their substantially smaller magnitudes, as
shown in Fig. 11(b), (f), (j), and (n). As we can see in
Fig. 11(d), (h), (l), and (p), when the initial GGVF vectors
are normalized by the proposed component-based scheme,
the consistently downward and significant components are
obtained at every pixel within all LTIs, which confirms our
analysis that the downward components are presented at all
pixels within the LTIs, and some components are considerably
smaller in magnitude than their orthogonal counterparts.

2) Convergence Results of Snakes: Because of the presence
of the consistently downward and significant components in
Fig. 11(b) and (j), the GGVF snakes in Fig. 11(a) and (i) are
able to converge completely to the odd-width LTIs. In contrast,
since there are no such components in Fig. 11(f) and (n),
the GGVF snakes in Fig. 11(e) and (m) fail to capture
the even-width LTIs. Compared with the GGVF snakes, the
CN-GGVF snakes successfully eliminate the obliteration prob-
lem, and are therefore capable of detecting all LTIs, as shown
in Fig. 11(c), (g), (k), and (o). We note that the GGVF snake
result in Fig. 11(m) is slightly better than that in Fig. 11(e),
which can be attributed to both the increasing number of the
downward components within the wider LTI and the increasing
magnitudes of these components, as analyzed in Section III. As
the even-width LTI becomes wider, the GGVF snake becomes
more likely to detect it.

3) Convergence Speeds of Snakes: After external forces are
obtained, snakes will deform under the influence of internal
and external forces to conform to the desired boundaries until
they converge. The GGVF snakes in Fig. 11(a), (e), (i), and (m)
converge after 680, 80, 420, and 240 iterations, respectively,
and the CN-GGVF snakes in Fig. 11(c), (g), (k), and (o)
converge after 128, 100, 88, and 80 iterations, respectively.
We can see that as the LTI becomes wider, the iteration
number required for the stabilized CN-GGVF snake decreases.
Similarly, the iteration number required for the GGVF snake
convergence to an odd-width LTI decreases. Compared with
the GGVF snake convergence, the corresponding CN-GGVF
snake convergence requires a much smaller number of itera-
tions owing to the proposed component-based normalization.
Since the two snakes differ greatly in the reconstruction of the
even-width LTI, it makes no sense to compare the iteration
number between them.

As shown in Fig. 11, the CN-GGVF snake significantly
improves the performance of the GGVF snake in capturing the
LTIs. Specifically, the CN-GGVF snake achieves remarkably
faster convergence speed in capturing the odd-width LTIs.
Furthermore, since the proposed normalization eliminates
the obliteration problem that plagues the GGVF snake, the
CN-GGVF snake is thus able to detect the even-width LTIs,
while also obtaining fast convergence speed. To further demon-
strate its superior performance in terms of capturing the
LTIs with different widths, the CN-GGVF snake is compared
with various state-of-the-art snakes, as shown in Fig. 12.
Corresponding to Fig. 12, Table I gives some statistics on the
iteration numbers of various snakes. It is straightforward to
find that the proposed CN-GGVF snake is the most efficient
one.

C. Noise Sensitivity

Snakes can sometimes be very sensitive to noise. The GGVF
and CN-GGVF snakes are applied to an impulse noise cor-
rupted U-shaped image to evaluate their noise sensitivity. The
noisy 64×64-pixel image is illustrated in Fig. 13(a). Fig. 13(b)
shows an edge map computed using Gσ(x, y) ∗ I(x, y), where
the Gaussian filter Gσ(x, y) with σ = 1 is applied to suppress
the noise. In addition, appropriate α, β, k, and n should be
selected to ensure the internal forces or the accumulated forces
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Fig. 12. Performance of GGVF, NGVF, NBGVF, DDGVF, VFC, and CN-GGVF snakes in capturing LTIs. The original images are 160 × 160-pixel line-
drawings with 5-, 6-, 7-, 8-, 9-, 10-, and 11-pixel-width LTIs in columns (a), (b), (c), (d), (e), (f), and (g), respectively. First row: GGVF snakes. Second row:
NGVF snakes. Third row: NBGVF snakes. Fourth row: DDGVF snakes. Fifth row: VFC snakes. Sixth row: CN-GGVF snakes.

TABLE I

Iteration Number for Contour Convergence to LTIs,

Corresponding to Fig. 12

5-pixel 6-pixel 7-pixel 8-pixel 9-pixel 10-pixel 11-pixel
GGVF 680 – 420 – 300 – 220
NGVF 260 – 200 – 160 180 148
NBGVF 620 – 440 – 280 – 244
DDGVF – – – – – 152 120
VFC – – – – – – –
CN-GGVF 128 100 88 80 76 72 72

The symbol “–” denotes that the corresponding snake cannot converge to
the LTI bottom.

of the desired boundary are able to overwhelm the forces
generated from the noise. Generally, these parameters should
be increased as the noise level increases. In this experiment,
k = 3 and n = 128 are selected to calculate the two vector
fields. As a result, both the GGVF and CN-GGVF snakes
converge well to the dominant U-shaped boundary, as shown
in Fig. 13(c) and (d), respectively. The two results, barely dis-

Fig. 13. (a) Noisy U-shaped image. (b) Edge map Gσ (x, y) ∗ I(x, y) with
σ = 1. Results (cyan solid lines) of (c) GGVF and (d) CN-GGVF snakes
(k = 3 and n = 128) from a same initialization (cyan dashed line).

tinguishable from each other, demonstrate the superior noise
robustness of the two snakes. Fig. 14 further demonstrates
that the CN-GGVF snake is less sensitive to Gaussian noise
than other snakes when capturing the LTIs. In the following
experiments, the noise sensitivity of the proposed snake will
be examined by applying it to some real images.

D. Real Images

1) Photographic Image: Experiments are performed on
real-photographic images to demonstrate the superior perfor-
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Fig. 14. Performance of GGVF, NGVF, NBGVF, DDGVF, VFC, and CN-GGVF snakes in capturing LTIs with Gaussian noise. The original images are
160 × 160-pixel line-drawings with 5-, 6-, 7-, and 8-pixel-width LTIs in the first, second, third, and fourth rows, respectively. (a) GGVF snakes. (b) NGVF
snakes. (c) NBGVF snakes. (d) DDGVF snakes. (e) VFC snakes. (f) CN-GGVF snakes.

mance of the CN-GGVF snake over the GGVF snake in
terms of capturing object boundaries, in particular the LTI
boundaries. As shown in Fig. 15, five images are used to
evaluate the performance. For the first one in Fig. 15(a), the
goal is to segment the Rocket. Fig. 15(b) shows an edge
map |∇[Gσ(x, y) ∗ I(x, y)]|2 with σ = 0.5, which is used to
calculate both the fields with k = 0.1 and n = 200. As shown
in Fig. 15(c), the GGVF snake fails to converge to both ends
of the Rocket, which represent LTIs when viewed from the
inside of the Rocket. The main reason for the failure is that the
external force components pulling the snake to both ends of the
Rocket are smaller in magnitude than the internal forces which
shrink the contour. After these components are increased by
the proposed component-based normalization, they are able
to move the CN-GGVF snake into both ends of the Rocket,
as shown in Fig. 15(d). For the second image, the desired
boundary is the outline of the Fighter aircraft. Fig. 15(f) shows
an edge map |∇[Gσ(x, y) ∗ I(x, y)]|2 with σ = 0.5. Since the
Fighter aircraft is relatively small in the image, n = 100 iter-
ations are performed to calculate both the fields with k = 0.1.
For the same reason as above, the GGVF snake in Fig. 15(g)
fails to capture the aircraft nose, while the CN-GGVF snake
in Fig. 15(h) reconstructs the aircraft boundary quite well. For
the third image, we aim to segment the depth Vernier caliper.
Compared with the above two images, the third one contains
more noise, in particular the depth scales. To suppress the
noise, a larger σ = 3 is selected to compute an edge map
|∇[Gσ(x, y) ∗ I(x, y)]|2, as shown in Fig. 15(j). In addition, a
larger k = 2 is used to calculate both the vector fields with
n = 400. As a result, the GGVF snake shown in Fig. 15(k)
succeeds in detecting the desired object except the fixed scale

at both sides due to the same reason as above. By contrast,
the CN-GGVF snake result in Fig. 15(l) shows an excellent
convergence to the desired boundary, despite the initialization
from far away, the image noise, and the LTIs. For the Bear
and Woman face images in Fig. 15(m) and (q), respectively,
it can be seen that better reconstructions are obtained by
the CN-GGVF snake than the GGVF snake. Experiments
and comparisons against the GGVF snake demonstrate that
the proposed CN-GGVF snake yields better performance in
capturing object boundaries in real photographic images, and
possesses the superior robustness to noise.

2) Magnetic Resonance Image: The GGVF and CN-GGVF
snakes are applied to a magnetic resonance image to further
test their sensitivity to noise. The test image is a 160 × 160-
pixel gray-level image of the left ventricle of a human heart, as
shown in Fig. 16(a). The goal of this experiment is to extract
the endocardium of the left ventricle. σ = 2.5 is employed to
calculate an edge map |∇[Gσ(x, y) ∗ I(x, y)]|2 in Fig. 16(b) to
suppress the noise. The resulting GGVF and CN-GGVF fields
with k = 0.05 and n = 160 are iteratively calculated from the
gradient of the edge map. After 50 iterations, both the GGVF
snake in Fig. 16(c) and the CN-GGVF snake in Fig. 16(d)
converge, and perform well in reconstructing the endocardial
border, including the papillary muscle that protrudes into the
cavity at about the 1 o’clock position and can be viewed as an
indentation but not an LTI. The two results again demonstrate
the outstanding noise robustness of both the snakes.

E. Object Tracking

In this section, human heart and goldfish video sequences
are employed to evaluate the tracking performance of the
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Fig. 15. Performance of GGVF and CN-GGVF snakes on photographic
images. (a) Rocket. (e) Fighter aircraft. (i) Vernier caliper. (m) Bear.
(q) Woman face. First column: original images. Second column: edge maps.
Third column: GGVF snakes. Fourth column: CN-GGVF snakes. (a) Original
image. (b) Edge map. (c) GGVF snake. (d) CN-GGVF snake. (e) Original
image. (f) Edge map. (g) GGVF snake. (h) CN-GGVF snake. (i) Original
image. (j) Edge map. (k) GGVF snake. (l) CN-GGVF snake. (m) Original
image. (n) Edge map. (o) GGVF snake. (p) CN-GGVF snake. (q) Original
image. (r) Edge map. (s) GGVF snake. (t) CN-GGVF snake.

Fig. 16. (a) Magnetic resonance image of the left ventricle of a human heart.
(b) Edge map |∇[Gσ (x, y) ∗ I(x, y)]|2 with σ = 2.5. Results of (c) GGVF and
(d) CN-GGVF snakes from a same initialization.

GGVF and CN-GGVF snakes. Specifically, we initialize the
snake in the first frame using a circle around the desired
object by hand. For the following frames, however, each
snake is automatically initialized by using the resulting contour
from the previous frame. The tracking results are shown
in Figs. 17 and 18, respectively. It can be seen that under
almost the same computational complexity, the CN-GGVF
snake outperforms the GGVF snake on both sequences, where
more boundary details can be detected by the proposed snake.
It is worth noting that the GGVF snake is more sensitive

Fig. 17. Performance of GGVF and CN-GGVF snakes in tracking a human
heart. First row: GGVF snakes. Second row: CN-GGVF snakes. (a) Frame 1.
(b) Frame 6. (c) Frame 14. (d) Frame 20. (e) Frame 1. (f) Frame 6. (g) Frame
14. (h) Frame 20.

Fig. 18. Performance of GGVF and CN-GGVF snakes in tracking a goldfish.
(a) GGVF (frame 1). (b) GGVF (frame 1). (c) CN-GGVF (frame 1). (d) CN-
GGVF (frame 1).

to initialization than the CN-GGVF snake, as illustrated in
Fig. 18(a) and (c).

VII. Conclusion

In this paper, we argued that at almost the same com-
putational cost, both GVF and GGVF snakes can capture
LTIs of odd widths when their vector fields are appropriately
smoothed, while the two snakes fail to work when the fields
are over-smoothed. On the other hand, both the snakes are gen-
erally incapable of converging to even-width LTIs regardless
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of the smoothness degree of the fields. We identified the cause
behind the convergence problem in GVF/GGVF, that is, the
directionally consistent external force components necessary
to pull the snake toward the LTI bottoms were significantly
smaller in magnitude than their orthogonal counterparts at
some pixels which tend to be disturbed during the diffusion
or obliterated in the vector-based normalization.

To solve the obliteration problem that plagues GGVF, we
proposed component-normalized GGVF (CN-GGVF), which
separately normalizes each component of initial GGVF vectors
with respect to its own magnitude. Experiments demonstrate
that compared with the GGVF snakes, the proposed CN-
GGVF snakes were able to capture LTIs regardless of odd
or even widths with a faster convergence speed, and achieve
lower computational complexity in vector normalization as
well as better performance on the real-photographic image
testing. Additionally, CN-GGVF preserves other desirable
properties of GGVF, such as a wide capture range and ro-
bustness to initialization and noise.
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